Learnabout Electronics - AC Theory

Formula Finder

Facts & Formulae for AC Theory

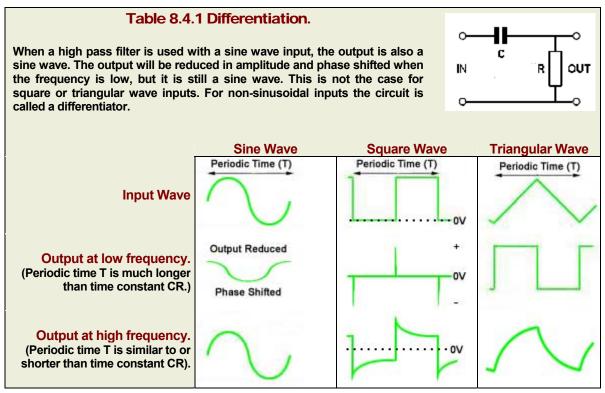
www.learnabout-electronics.org

Contents

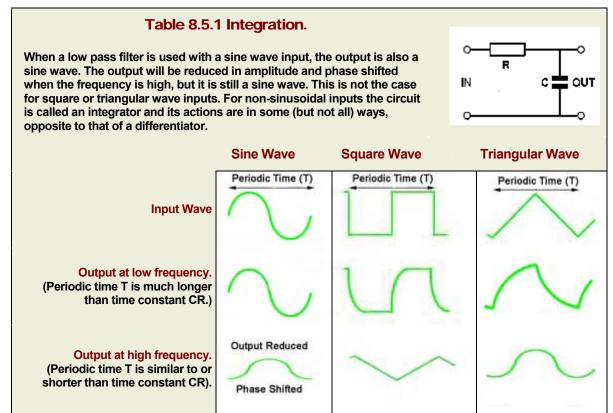
AC Wave Values
Capacitance
Charge on a Capacitor
Total Capacitance
Inductance
Ohms Law
Time Constants
Phase
Angular Velocity
Phasor Diagrams
Pythagoras' Theorem
Trigonometry
Reactance
Impedance
CR Filter Circuits
Corner
(Cut off) Frequency
LCR Series Circuits
Resonant Frequency
Q factor
Dynamic Resistance
Bandwidth
LCR Parallel Circuits
Differentiation
Integration

Formula Finder

	Deak val	ue (VorV) Relat	ive to zero		
		ue (V _{PK} or V _{MAX}) Relat			
		RMS value (V _{RMS}			
		Average value (V	V_{AV}) = V _{PK} x 0.637		
AC Wave		Centre line (M	lav also be zero)		
	Centre line (May also be zero)				
Values	Peak to peak				
	value (V _{PP})				
	↓				
	Periodic time T (Frequency = 1/T)				
	Sub unit micro Farads	Abbreviation μF	Standard notation $x 10^{-6}$		
	nano Farada	nF	x 10 ⁻⁹		
	pico Farads	pF	x 10 ⁻¹²		
	Capacitance depends on four thing	gs;			
	1. The area of the plates				
	2. The distance between the plates				
Capacitance	3.The type of dielectric material				
	4.Temperature				
	Capacitance (C) is DIRECTLY PROPORTIONAL TO THE AREA OF THE TWO PLATES				
	Capacitance (C) is INVERSELY PROPORTIONAL TO THE DISTANCE BETWEEN THE				
	PLATES.				
Charge on a	\wedge				
Charge on a	Q		C = Q/V or $V = Q/Cthe voltage applied, in Volts. C is$		
Capacitor			tance in Farads.		
		Q is the qu	antity of charge in Coulombs.		
	0.40				
	$\frac{C_1 \times C_2}{C_1 + C_2}$	C1 + C	2 + C3 +etc.		
Total	$C_1 + C_2$	01.0	2 1 00 1 etc.		
Capacitance		Pa	rallel network		
	Series Network				
	1 Henry is the amount of inductance neede	d to induce an FN	MF of 1 volt when the current in a		
Inductance	conductor changes at the rate of 1 Ampere per second.				
	The Henry is a rather large unit to be useful in electronics and the milli-Henry (mH) and micro Henry (mH) are more common.				
Ohms Law	Voltage across a resistor $V_R = I \times R$				


	Time constant of a CR circuit T = CR seconds				
	Voltage after 1 Time constant = 63.2% of Maximum voltage (supply voltage)				
	Fully charged after 5 time constants.				
Time	Discharges to 36.8% of maximum voltage after 1 time constant.				
Constants					
	Time constant of a LR circuit T = L / R seconds.				
	Current after 1 Time constant = 63.2% of Maximum Current				
	Max Current reached after 5 time constants				
	Remember				
	CIVIL In a pure inductor, voltage (V_L) leads current (I_S) by 90°				
Phase	I lags V in L In a pure capacitor, voltage (V _C) lags current (I _S) by 90°				
	CIVIL				
	In C, V lags I				
Angular	In calculations involving rotation, it is common to use the angular unit RADIAN (rad.) where 360° = 2π rads. A phasor can therefore be said to rotate through $2\pi f$ radians per second. This is				
Velocity	called the ANGULAR VELOCITY of the phasor, and is commonly represented by $2\pi f$ or alternatively by the symbol ω (omega).				
	Rule 1. The length of the phasor is directly proportional to the amplitude of the wave depicted.				
Rule 2. In L, C & R in SERIES circuits, the phasor representing CURRENT is horizont					
Phasor	Rule 3. In PARALLEL circuits the SUPPLY VOLTAGE phasor is always drawn in the reference				
Diagrams.					
	direction (horizontally) because in a parallel circuit the supply voltage is common to all components.				
	Rule 4. The direction of rotation of all phasors is considered to be ANTI-CLOCKWISE.				
	Rule 5. In any one diagram, the same type of value (RMS, peak etc.) is used for all phasors, not				
	a mixture of values.				
Pythagoras'	The square of the hypotenuse of a right angle				
Theorem	triangle is equal to the sum of the squares of the two adjacent sides $h^{1} = a^{2} + b^{2}$				
	- b b				

Trigonometry	The formula for finding an angle depends on which sides of the triangle have a known value. The choice for finding the unknown angle θ (in degrees) is between	$\theta^{\circ} = \sin^{-1}(\text{Opposite / Hypotenuse})$ $\theta^{\circ} = \cos^{-1}(\text{Adjacent / Hypotenuse})$ $\theta^{\circ} = \tan^{-1}(\text{Opposite / Adjacent})$ <u>Hypotenuse</u> θ			
Reactance	INDUCTIVE REACTANCE (X_L) $2\pi f L \text{ or } \omega L$	CAPACITIVE REACTANCE (X _c). $\frac{1}{2\pi f C} or \frac{1}{\omega C}$			
Impedance	$Z = \sqrt{(R^2 + X_L^2)}$	$Z = \sqrt{(R^2 + X_c^2)}$			
	IMPEDANCE TRIANGLE When using this formula on a calculator it is important to remember to use the brackets, or alternatively, to find the sum of $R^2 + X_L^2$ before using the square root key.				
CR Filter Circuits	V _{IN} C R V _R (V _{out}) High Pass Filter				
Corner	Corner Frequency (CR High/Low pass filter)	$f_c = \frac{1}{2\pi CR}$			
(Cut off) Frequency	Corner Frequency (LR High/Low pass filter) $f_c = \frac{1}{2\pi LR}$				
LCR Series Circuits	 6 Things you need to know about LCR Series Circuits. 1. AT RESONANCE (<i>f</i>_r) V_c is equal to, but in anti-phase to V_L 2.; AT RESONANCE (<i>f</i>_r) Impedance (Z) is at minimum and equal to RESISTANCE(R) 3. AT RESONANCE (<i>f</i>_r) Circuit current (I_S) is at a maximum. 4. AT RESONANCE (<i>f</i>_r) The circuit is entirely resistive. 5. BELOW RESONANCE (<i>f</i>_r) The circuit is capacitive. 6. ABOVE RESONANCE (<i>f</i>_r) The circuit is inductive. 				


Formula Finder

Resonant	Resonant frequency of Series or Parallel LCR Circuit $f_r = \frac{1}{(2\pi\sqrt{LC})}$			
Frequency	Resonant frequency - Low frequency version where L contains an appreciable amount of internal resistance. $f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$			
Q factor	(Series or Parallel Circuit) $Q = \frac{X_L}{R} \text{ or } \frac{2\pi f_r L}{R}$			
Dynamic Resistance	Dynamic Resistance (R _D) Parallel Circuit $R_D = \frac{L}{CR}$			
Bandwidth	Bandwidth (B) as a function of frequency (f_r) and Q factor (Q) $Q = \frac{f_r}{B} \text{ or } B = \frac{f_r}{Q}$			
	6 Things you need to know about LCR parallel Circuits			
LCR Parallel Circuits	(and that are different to the Series Circuit.)			
	 AT RESONANCE (<i>f</i>_r) V_C is not necessarily exactly equal to V_L but V_S and I_S are IN PHASE 			
	2. AT RESONANCE (<i>f</i> _r) Impedance (<i>Z</i>) is at maximum and is called the DYNAMIC RESISTANCE (R _D)			
	3. AT RESONANCE (f_r) Circuit current (I_s) is at minimum.			
	4. AT RESONANCE (<i>f</i> 			
	5. BELOW RESONANCE (f_r) The circuit is inductive.			
	6. ABOVE RESONANCE (<i>f</i> r) The circuit is capacitive.			

Differentiation

Integration

