FEATURES

- LM27313-Q1 is an Automotive Grade Product that is AEC-Q100 Grade 1 Qualified (−40°C to +125°C Operating Junction Temperature)
- 30V DMOS FET Switch
- 1.6 MHz Switching Frequency
- Low $R_{DS(ON)}$ DMOS FET
- Switch Current up to 800 mA
- Wide Input Voltage Range (2.7V–14V)
- Low Shutdown Current (<1 µA)
- 5-Lead SOT-23 Package
- Uses Tiny Capacitors and Inductors
- Cycle-by-Cycle Current Limiting
- Internally Compensated

APPLICATIONS

- White LED Current Source
- PDA’s and Palm-Top Computers
- Digital Cameras
- Portable Phones, Games and Media Players
- GPS Devices

Typical Application Circuits

DESCRIPTION

The LM27313 switching regulator is a current-mode boost converter with a fixed operating frequency of 1.6 MHz.

The use of the SOT-23 package, made possible by the minimal losses of the 800 mA switch, and small inductors and capacitors result in extremely high power density. The 30V internal switch makes these solutions perfect for boosting to voltages of 5V to 28V.

This part has a logic-level shutdown pin that can be used to reduce quiescent current and extend battery life.

Protection is provided through cycle-by-cycle current limiting and thermal shutdown. Internal compensation simplifies design and reduces component count.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Copyright © 2006–2013, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Connection Diagram

Figure 1. 5-Lead SOT-23 Package – Top View
See Package Number DBV

PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>Drain of the internal FET switch.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Analog and power ground.</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Feedback point that connects to external resistive divider to set V_{OUT}.</td>
</tr>
<tr>
<td>4</td>
<td>SHDN</td>
<td>Shutdown control input. Connect to V_{IN} if this feature is not used.</td>
</tr>
<tr>
<td>5</td>
<td>V_{IN}</td>
<td>Analog and power input.</td>
</tr>
</tbody>
</table>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temp. (Soldering, 5 sec.)</td>
<td>300°C</td>
</tr>
<tr>
<td>Power Dissipation(^{(3)})</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>FB Pin Voltage</td>
<td>−0.4V to +6V</td>
</tr>
<tr>
<td>SW Pin Voltage</td>
<td>−0.4V to +30V</td>
</tr>
<tr>
<td>Input Supply Voltage</td>
<td>−0.4V to +14.5V</td>
</tr>
<tr>
<td>Shutdown Input Voltage</td>
<td>(Survival) −0.4V to +14.5V</td>
</tr>
<tr>
<td>ESD Rating(^{(4)})</td>
<td>Human Body Model ±2 kV</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is to be functional, but does not ensure specific limits. For ensured specifications and conditions see the Electrical Characteristic table.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) The maximum power dissipation which can be safely dissipated for any application is a function of the maximum junction temperature, $T_{J\text{(MAX)}} = 125°C$, the junction-to-ambient thermal resistance for the SOT-23 package, $\theta_{J-A} = 265°C/W$, and the ambient temperature, T_A.

The maximum allowable power dissipation at any ambient temperature for designs using this device can be calculated using the formula:

$$P_{\text{(MAX)}} = \frac{T_J\text{(MAX)} - T_A}{\theta_{J-A}} = \frac{125 - T_A}{265}$$

If power dissipation exceeds the maximum specified above, the internal thermal protection circuitry will protect the device by reducing the output voltage as required to maintain a safe junction temperature.

(4) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. Test method is per JESD22-A114.

Submit Documentation Feedback

Copyright © 2006–2013, Texas Instruments Incorporated

Product Folder Links: LM27313
Operating Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td></td>
<td>2.7</td>
<td>14</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{SW}</td>
<td>Switch Current Limit</td>
<td>See (1)</td>
<td>0.80</td>
<td>1.25</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>R_{DS(ON)}</td>
<td>Switch ON Resistance</td>
<td>I_{SW} = 100 mA</td>
<td>500</td>
<td>650</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{SHDN(TH)}</td>
<td>Shutdown Threshold</td>
<td>Device ON</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device OFF</td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown Pin Bias Current</td>
<td>V_{SHDN} = 0</td>
<td>0</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{SHDN} = 5V</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Pin Reference Voltage</td>
<td>V_{IN} = 3V</td>
<td>1.205</td>
<td>1.230</td>
<td>1.255</td>
<td>V</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback Pin Bias Current</td>
<td>V_{FB} = 1.23V</td>
<td>60</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{Q}</td>
<td>Quiescent Current</td>
<td>V_{SHDN} = 5V, Switching</td>
<td>2.1</td>
<td>3.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{SHDN} = 5V, Not Switching</td>
<td>400</td>
<td>500</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{SHDN} = 0</td>
<td>0.024</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV_{FB}/ΔV_{IN}</td>
<td>FB Voltage Line Regulation</td>
<td>2.7V ≤ V_{IN} ≤ 14V</td>
<td>0.02</td>
<td></td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>Switching Frequency</td>
<td></td>
<td>1.15</td>
<td>1.6</td>
<td>1.90</td>
<td>MHz</td>
</tr>
<tr>
<td>D_{MAX}</td>
<td>Maximum Duty Cycle</td>
<td></td>
<td>80</td>
<td>88</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{L}</td>
<td>Switch Leakage</td>
<td>Not Switching, V_{SW} = 5V</td>
<td></td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

(1) The maximum power dissipation which can be safely dissipated for any application is a function of the maximum junction temperature, \(T_{J(MAX)} = 125°C \), the junction-to-ambient thermal resistance for the SOT-23 package, \(\theta_{J-A} = 265°C/W \), and the ambient temperature, \(T_A \). The maximum allowable power dissipation at any ambient temperature for designs using this device can be calculated using the formula:

\[
P_{(MAX)} = \frac{T_J(MAX) - T_A}{\theta_{J-A}} = \frac{125 - T_A}{265}
\]

If power dissipation exceeds the maximum specified above, the internal thermal protection circuitry will protect the device by reducing the output voltage as required to maintain a safe junction temperature.

Electrical Characteristics

Unless otherwise specified: \(V_{IN} = 5V \), \(V_{SHDN} = 5V \), \(I_L = 0 \ mA \), and \(T_J = 25°C \). Limits in standard typeface are for \(T_J = 25°C \), and limits in **boldface type** apply over the full operating temperature range \((-40°C ≤ T_J ≤ +125°C)\). Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at \(T_J = 25°C \), and are provided for reference purposes only.

(1) Switch current limit is dependent on duty cycle. Limits shown are for duty cycles ≤ 50%. See Figure 15 in Application Information – **MAXIMUM SWITCH CURRENT** section.
Typical Performance Characteristics

Unless otherwise specified: $V_{\text{IN}} = 5\text{V}$, SHDN pin is tied to V_{IN}, $T_J = 25^\circ\text{C}$.

- **Figure 2.** I_q vs V_{IN} (Active) vs Temperature
- **Figure 3.** Oscillator Frequency vs Temperature
- **Figure 4.** Max. Duty Cycle vs Temperature
- **Figure 5.** Feedback Voltage vs Temperature
- **Figure 6.** $R_{\text{DS(ON)}}$ vs Temperature
- **Figure 7.** Current Limit vs Temperature
Typical Performance Characteristics (continued)

Unless otherwise specified: $V_{IN} = 5V$, SHDN pin is tied to V_{IN}, $T_J = 25^\circ C$.

$R_{DS(ON)}$ vs V_{IN}

Figure 8.

Efficiency vs Load Current ($V_{OUT} = 12V$)

- $V_{IN} = 6.5V$
- $V_{IN} = 5V$
- $V_{IN} = 3.3V$

Figure 9.

Efficiency vs Load Current ($V_{OUT} = 15V$)

- $V_{IN} = 10V$
- $V_{IN} = 5V$
- $V_{IN} = 3.3V$

Figure 10.

Efficiency vs Load Current ($V_{OUT} = 20V$)

- $V_{IN} = 10V$
- $V_{IN} = 5V$
- $V_{IN} = 3.3V$

Figure 11.

Efficiency vs Load Current ($V_{OUT} = 25V$)

- $V_{IN} = 10V$
- $V_{IN} = 5V$

Figure 12.
The LM27313 is a switching converter IC that operates at a fixed frequency of 1.6 MHz using current-mode control for fast transient response over a wide input voltage range and incorporate pulse-by-pulse current limiting protection. Because this is current mode control, a 50 mΩ sense resistor in series with the switch FET is used to provide a voltage (which is proportional to the FET current) to both the input of the pulse width modulation (PWM) comparator and the current limit amplifier.

At the beginning of each cycle, the S-R latch turns on the FET. As the current through the FET increases, a voltage (proportional to this current) is summed with the ramp coming from the ramp generator and then fed into the input of the PWM comparator. When this voltage exceeds the voltage on the other input (coming from the Gm amplifier), the latch resets and turns the FET off. Since the signal coming from the Gm amplifier is derived from the feedback (which samples the voltage at the output), the action of the PWM comparator constantly sets the correct peak current through the FET to keep the output voltage in regulation.

Q1 and Q2 along with R3 - R6 form a bandgap voltage reference used by the IC to hold the output in regulation. The currents flowing through Q1 and Q2 will be equal, and the feedback loop will adjust the regulated output to maintain this. Because of this, the regulated output is always maintained at a voltage level equal to the voltage at the FB node "multiplied up" by the ratio of the output resistive divider.

The current limit comparator feeds directly into the flip-flop, that drives the switch FET. If the FET current reaches the limit threshold, the FET is turned off and the cycle terminated until the next clock pulse. The current limit input terminates the pulse regardless of the status of the output of the PWM comparator.
APPLICATION INFORMATION

SELECTING THE EXTERNAL CAPACITORS

The LM27313 requires ceramic capacitors at the input and output to accommodate the peak switching currents the part needs to operate. Electrolytic capacitors have resonant frequencies which are below the switching frequency of the device, and therefore can not provide the currents needed to operate. Electrolytics may be used in parallel with the ceramics for bulk charge storage which will improve transient response.

When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden, AVX, and Murata.

SELECTING THE OUTPUT CAPACITOR

A single ceramic capacitor of value 4.7 µF to 10 µF will provide sufficient output capacitance for most applications. For output voltages below 10V, a 10 µF capacitance is required. If larger amounts of capacitance are desired for improved line support and transient response, tantalum capacitors can be used in parallel with the ceramics. Aluminum electrolys with ultra low ESR such as Sanyo Oscon can be used, but are usually prohibitively expensive. Typical AI electrolytic capacitors are not suitable for switching frequencies above 500 kHz due to significant ringing and temperature rise due to self-heating from ripple current. An output capacitor with excessive ESR can also reduce phase margin and cause instability.

SELECTING THE INPUT CAPACITOR

An input capacitor is required to serve as an energy reservoir for the current which must flow into the inductor each time the switch turns ON. This capacitor must have extremely low ESR and ESL, so ceramic must be used. We recommend a nominal value of 2.2 µF, but larger values can be used. Since this capacitor reduces the amount of voltage ripple seen at the input pin, it also reduces the amount of EMI passed back along that line to other circuitry.

FEED-FORWARD COMPENSATION

Although internally compensated, the feed-forward capacitor Cf is required for stability (see Typical Application Circuits). Adding this capacitor puts a zero in the loop response of the converter. Without it, the regulator loop can oscillate. The recommended frequency for the zero fz should be approximately 8 kHz. Cf can be calculated using the formula:

\[
C_f = \frac{1}{(2 \times \pi \times R_1 \times f_z)}
\]

SELECTING DIODES

The external diode used in the typical application should be a Schottky diode. If the switch voltage is less than 15V, a 20V diode such as the MBR0520 is recommended. If the switch voltage is between 15V and 25V, a 30V diode such as the MBR0530 is recommended. If the switch voltage exceeds 25V, a 40V diode such as the MBR0540 should be used.

The MBR05xx series of diodes are designed to handle a maximum average current of 500mA. For applications with load currents to 800mA, a Microsemi UPS5817 can be used.

LAYOUT HINTS

High frequency switching regulators require very careful layout of components in order to get stable operation and low noise. All components must be as close as possible to the LM27313 device. It is recommended that a 4-layer PCB be used so that internal ground planes are available.

As an example, a recommended layout of components is shown:
Some additional guidelines to be observed:
1. Keep the path between L1, D1, and C2 extremely short. Parasitic trace inductance in series with D1 and C2 will increase noise and ringing.
2. The feedback components R1, R2 and CF must be kept close to the FB pin of the LM27313 to prevent noise injection on the high impedance FB pin.
3. If internal ground planes are available (recommended) use vias to connect directly to the LM27313 ground at device pin 2, as well as the negative sides of capacitors C1 and C2.

SETTING THE OUTPUT VOLTAGE

The output voltage is set using the external resistors R1 and R2 (see Typical Application Circuits). A value of 13.3 kΩ is recommended for R2 to establish a divider current of approximately 92 µA. R1 is calculated using the formula:

\[
R1 = R2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1 \right)
\]
(2)

DUTY CYCLE

The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-to-input voltage that the converter can attain in continuous mode of operation. The duty cycle for a given boost application is defined as:

\[
\text{Duty Cycle} = \frac{V_{OUT} + V_{DIODE} - V_{IN}}{V_{OUT} + V_{DIODE} - V_{SW}}
\]
(3)

This applies for continuous mode operation.

The equation shown for calculating duty cycle incorporates terms for the FET switch voltage and diode forward voltage. The actual duty cycle measured in operation will also be affected slightly by other power losses in the circuit such as wire losses in the inductor, switching losses, and capacitor ripple current losses from self-heating. Therefore, the actual (effective) duty cycle measured may be slightly higher than calculated to compensate for these power losses. A good approximation for effective duty cycle is:

\[
\text{DC (eff)} = (1 - \text{Efficiency} \times \left(\frac{V_{IN}}{V_{OUT}} \right))
\]
(4)

Where the efficiency can be approximated from the curves provided.
INDUCTANCE VALUE

The first question we are usually asked is: “How small can I make the inductor?” (because they are the largest sized component and usually the most costly). The answer is not simple and involves trade-offs in performance. More inductance means less inductor ripple current and less output voltage ripple (for a given size of output capacitor). More inductance also means more load power can be delivered because the energy stored during each switching cycle is:

\[E = \frac{L}{2} \times (lp)^2 \]

where

- “lp” is the peak inductor current. \((5) \)

An important point to observe is that the LM27313 will limit its switch current based on peak current. This means that since \(lp(\text{max}) \) is fixed, increasing \(L \) will increase the maximum amount of power available to the load. Conversely, using too little inductance may limit the amount of load current which can be drawn from the output.

Best performance is usually obtained when the converter is operated in “continuous” mode at the load current range of interest, typically giving better load regulation and less output ripple. Continuous operation is defined as not allowing the inductor current to drop to zero during the cycle. It should be noted that all boost converters shift over to discontinuous operation as the output load is reduced far enough, but a larger inductor stays “continuous” over a wider load current range.

To better understand these tradeoffs, a typical application circuit (5V to 12V boost with a 10 µH inductor) will be analyzed.

Since the LM27313 typical switching frequency is 1.6 MHz, the typical period is equal to \(1/f_{SW(\text{TYP})} \), or approximately 0.625 µs.

We will assume: \(V_{\text{IN}} = 5V \), \(V_{\text{OUT}} = 12V \), \(V_{\text{DIODE}} = 0.5V \), \(V_{\text{SW}} = 0.5V \). The duty cycle is:

\[\text{Duty Cycle} = \left(\frac{(12V + 0.5V - 5V)}{(12V + 0.5V - 0.5V)} \right) = 62.5\% \] \((6) \)

The typical ON time of the switch is:

\[(62.5\% \times 0.625 \mu s) = 0.390 \mu s \] \((7) \)

It should be noted that when the switch is ON, the voltage across the inductor is approximately 4.5V.

Using the equation:

\[V = L \times \left(\frac{\text{di}}{\text{dt}} \right) \] \((8) \)

We can then calculate the \(\text{di}/\text{dt} \) rate of the inductor which is found to be 0.45 A/µs during the ON time. Using these facts, we can then show what the inductor current will look like during operation:

![Figure 14. 10 µH Inductor Current, 5V–12V Boost](image)

During the 0.390 µs ON time, the inductor current ramps up 0.176A and ramps down an equal amount during the OFF time. This is defined as the inductor “ripple current”. It can also be seen that if the load current drops to about 33 mA, the inductor current will begin touching the zero axis which means it will be in discontinuous mode. A similar analysis can be performed on any boost converter, to make sure the ripple current is reasonable and continuous operation will be maintained at the typical load current values.
MAXIMUM SWITCH CURRENT

The maximum FET switch current available before the current limiter cuts in is dependent on duty cycle of the application. This is illustrated in Figure 15 below which shows typical values of switch current as a function of effective (actual) duty cycle:

CALCULATING LOAD CURRENT

As shown in the figure which depicts inductor current, the load current is related to the average inductor current by the relation:

\[I_{LOAD} = I_{IND(AVG)} \times (1 - DC) \]

where

- "DC" is the duty cycle of the application.

The switch current can be found by:

\[I_{SW} = I_{IND(AVG)} + \frac{1}{2} (I_{RIPPLE}) \]

Inductor ripple current is dependent on inductance, duty cycle, input voltage and frequency:

\[I_{RIPPLE} = DC \times (V_{IN} - V_{SW}) / (f_{SW} \times L) \]

Combining all terms, we can develop an expression which allows the maximum available load current to be calculated:

\[I_{LOAD(max)} = (1 - DC) \times (I_{SW(max)} - DC (V_{IN} - V_{SW})) / 2fL \]

The equation shown to calculate maximum load current takes into account the losses in the inductor or turn-OFF switching losses of the FET and diode. For actual load current in typical applications, we took bench data for various input and output voltages and displayed the maximum load current available for a typical device in graph form:
DESIGN PARAMETERS V_{SW} AND I_{SW}

The value of the FET "ON" voltage (referred to as V_{SW} in the equations) is dependent on load current. A good approximation can be obtained by multiplying the "ON Resistance" of the FET times the average inductor current.

FET on resistance increases at V_{IN} values below 5V, since the internal N-FET has less gate voltage in this input voltage range (see Typical Performance Characteristics curves). Above $V_{IN} = 5V$, the FET gate voltage is internally clamped to 5V.

The maximum peak switch current the device can deliver is dependent on duty cycle. The minimum switch current value (I_{SW}) is ensured to be at least 800 mA at duty cycles below 50%. For higher duty cycles, see Typical Performance Characteristics curves.

THERMAL CONSIDERATIONS

At higher duty cycles, the increased ON time of the FET means the maximum output current will be determined by power dissipation within the LM27313 FET switch. The switch power dissipation from ON-state conduction is calculated by:

$$ P_{SW} = DC \times I_{IND(AVG)}^2 \times R_{DS(ON)} $$ (13)

There will be some switching losses as well, so some derating needs to be applied when calculating IC power dissipation.

MINIMUM INDUCTANCE

In some applications where the maximum load current is relatively small, it may be advantageous to use the smallest possible inductance value for cost and size savings. The converter will operate in discontinuous mode in such a case.

The minimum inductance should be selected such that the inductor (switch) current peak on each cycle does not reach the 800 mA current limit maximum. To understand how to do this, an example will be presented.

In this example, the LM27313 nominal switching frequency is 1.6 MHz, and the minimum switching frequency is 1.15 MHz. This means the maximum cycle period is the reciprocal of the minimum frequency:

$$ T_{ON(max)} = 1/1.15M = 0.870 \mu s $$ (14)

We will assume: $V_{IN} = 5V$, $V_{OUT} = 12V$, $V_{SW} = 0.2V$, and $V_{DIODE} = 0.3V$. The duty cycle is:

$$ \text{Duty Cycle} = \frac{(12V + 0.3V - 5V)}{(12V + 0.3V - 0.2V)} = 60.3\% $$ (15)

Therefore, the maximum switch ON time is:

$$ (60.3\% \times 0.870 \mu s) = 0.524 \mu s $$ (16)

An inductor should be selected with enough inductance to prevent the switch current from reaching 800 mA in the 0.524 μs ON time interval (see Figure 17):
The voltage across the inductor during ON time is 4.8V. Minimum inductance value is found by:

$$L = V \times \frac{dt}{dl}$$ \hspace{1cm} (17)

$$L = 4.8V \times \frac{0.524 \mu s}{0.8 mA} = 3.144 \mu H$$ \hspace{1cm} (18)

In this case, a 3.3 \(\mu \)H inductor could be used, assuming it provided at least that much inductance up to the 800 mA current value. This same analysis can be used to find the minimum inductance for any boost application.

INDUCTOR SUPPLIERS

Some of the recommended suppliers of inductors for this product include, but are not limited to, Sumida, Coilcraft, Panasonic, TDK and Murata. When selecting an inductor, make certain that the continuous current rating is high enough to avoid saturation at peak currents. A suitable core type must be used to minimize core (switching) losses, and wire power losses must be considered when selecting the current rating.

SHUTDOWN PIN OPERATION

The device is turned off by pulling the shutdown pin low. If this function is not going to be used, the pin should be tied directly to \(V_{IN} \). If the SHDN function will be needed, a pull-up resistor must be used to \(V_{IN} \) (50k\(\Omega \) to 100 \(k\Omega \) is recommended), or the pin must be actively driven high and low. The SHDN pin must not be left unterminated.
REVISION HISTORY

Changes from Revision C (April 2013) to Revision D

• Changed layout of National Data Sheet to TI format ... 12
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings (4)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM27313XMF/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SRPB</td>
<td>Samples</td>
</tr>
<tr>
<td>LM27313XMFX</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SRPB</td>
<td>Samples</td>
</tr>
<tr>
<td>LM27313XMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SRPB</td>
<td>Samples</td>
</tr>
<tr>
<td>LM27313XQMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SD3B</td>
<td>Samples</td>
</tr>
<tr>
<td>LM27313XQMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>SD3B</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. – The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM27313, LM27313-Q1 :

- **Catalog:** LM27313
- **Automotive:** LM27313-Q1

NOTE: Qualified Version Definitions:

- **Catalog** - TI's standard catalog product
- **Automotive** - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

Device	**Package Type**	**Package Drawing**	**Pins**	**SPQ**	**Reel Diameter (mm)**	**Reel Width W1 (mm)**	**A0 (mm)**	**B0 (mm)**	**K0 (mm)**	**P1 (mm)**	**W (mm)**	**Pin1 Quadrant**
LM27313XMF/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3
LM27313XMFX | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3
LM27313XMFX/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3
LM27313XQMF/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3
LM27313XQMF/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM27313XF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM27313XMXF</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM27313XMFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM27313XQMF/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM27313XQMFX/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-178 Variation AA.
LAND PATTERN DATA

DBV (R-PDSC-G5) PLASTIC SMALL OUTLINE

Example Board Layout

Stencil Openings
Based on a stencil thickness of .127mm (.005 inch).

Solder Mask Opening

Pad Geometry

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

4209593-3/C 08/11

www.ti.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated