These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (26 V for the LM2902), and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 can be operated directly from the standard 5-V supply that is used in digital systems and provides the required interface electronics, without requiring additional ±15-V supplies.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>T_A</th>
<th>$V_{io\text{max}}$ AT 25°C</th>
<th>MAX TESTED V_{cc}</th>
<th>PACKAGE</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PDIP (N)</td>
<td>Tube of 25</td>
<td>LM324N</td>
</tr>
<tr>
<td>$7 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324D</td>
<td>LM324K</td>
</tr>
<tr>
<td>$0°C$ to $70°C$</td>
<td></td>
<td></td>
<td>Reel of 5000</td>
<td>LM324DR</td>
<td>LM324</td>
</tr>
<tr>
<td>$5 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324KD</td>
<td>LM324K</td>
</tr>
<tr>
<td>$-25°C$ to $85°C$</td>
<td></td>
<td></td>
<td>Reel of 5000</td>
<td>LM324KDR</td>
<td>LM324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOIC (D)</td>
<td>Reel of 2500</td>
<td>LM324K</td>
</tr>
<tr>
<td>$7 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$0°C$ to $70°C$</td>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$5 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$-25°C$ to $85°C$</td>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOP (NS)</td>
<td>Tube of 90</td>
<td>LM324PWR</td>
</tr>
<tr>
<td>$3 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Reel of 2500</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$0°C$ to $70°C$</td>
<td></td>
<td></td>
<td>Tube of 90</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$5 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Reel of 2500</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td>$-25°C$ to $85°C$</td>
<td></td>
<td></td>
<td>Tube of 90</td>
<td>LM324K</td>
<td>LM324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSOP (DB)</td>
<td>Tube of 25</td>
<td>LM324ADBR</td>
</tr>
<tr>
<td>$3 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324AD</td>
<td>LM324</td>
</tr>
<tr>
<td>$0°C$ to $70°C$</td>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>LM324ADR</td>
<td>LM324</td>
</tr>
<tr>
<td>$5 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324AD</td>
<td>LM324</td>
</tr>
<tr>
<td>$-25°C$ to $85°C$</td>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>LM324ADR</td>
<td>LM324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSSOP (PW)</td>
<td>Tube of 25</td>
<td>LM324APWR</td>
</tr>
<tr>
<td>$5 , mV$</td>
<td>$30 , V$</td>
<td></td>
<td>Tube of 50</td>
<td>LM324APW</td>
<td>LM324</td>
</tr>
<tr>
<td>$-25°C$ to $85°C$</td>
<td></td>
<td></td>
<td>Reel of 2500</td>
<td>LM324APW</td>
<td>LM324</td>
</tr>
</tbody>
</table>

† For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
ORDERING INFORMATION (CONTINUED)

| T_A | $V_{|0|\text{max}}$ AT 25°C | MAX TESTED V_{CC} | PACKAGE† | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|-------|-----------------------------|---------------------|----------|-----------------------|------------------|
| 7 mV | 26 V | PDIP (N) | Tube of 25 | LM2902N | LM2902N |
| | | PDIP (N) | Tube of 25 | LM2902KN | LM2902KN |
| | | SOIC (D) | Tube of 50 | LM2902D | |
| | | SOIC (D) | Reel of 2500 | LM2902DR | |
| | | SOIC (D) | Tube of 50 | LM2902K | |
| | | SOIC (D) | Reel of 2500 | LM2902KDR | |
| | 32 V | SOIC (D) | Reel of 2000 | LM2902NSR | |
| | | SOIC (D) | Tube of 50 | LM2902KNS | |
| | | SOIC (D) | Reel of 2000 | LM2902KNSR | |
| | | SSOP (DB) | Tube of 80 | LM2902KDB | L2902K |
| | | SSOP (DB) | Reel of 2000 | LM2902KDBR | L2902K |
| | 32 V | TSSOP (PW) | Tube of 90 | LM2902PW | L2902 |
| | | TSSOP (PW) | Reel of 2000 | LM2902PWR | L2902 |
| | | TSSOP (PW) | Tube of 90 | LM2902KPW | L2902K |
| | | TSSOP (PW) | Reel of 2000 | LM2902KPWR | L2902K |
| 2 mV | 32 V | SOIC (D) | Reel of 2500 | LM2902KVQDR | L2902KV |
| | | SOIC (D) | Reel of 2000 | LM2902KVQWR | L2902KV |
| | 5 mV | CDIP (J) | Tube of 25 | LM124J | LM124J |
| | | CFP (W) | Tube of 25 | LM124W | LM124W |
| | | LCCC (FK) | Tube of 55 | LM124FK | LM124FK |
| | | SOIC (D) | Tube of 50 | LM124D | LM124 |
| | | SOIC (D) | Reel of 2500 | LM124DR | LM124 |
| 2 mV | 30 V | CDIP (J) | Tube of 25 | LM124AJ | LM124AJ |
| | | CFP (W) | Tube of 25 | LM124AW | LM124AW |
| | | LCCC (FK) | Tube of 55 | LM124AFK | LM124AFK |

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol (each amplifier)
schematic (each amplifier)

![Schematic Diagram]

COMPONENT COUNT

<table>
<thead>
<tr>
<th>Component</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epi-FET</td>
<td>1</td>
</tr>
<tr>
<td>Transistors</td>
<td>95</td>
</tr>
<tr>
<td>Diodes</td>
<td>4</td>
</tr>
<tr>
<td>Resistors</td>
<td>11</td>
</tr>
<tr>
<td>Capacitors</td>
<td>4</td>
</tr>
</tbody>
</table>

† ESD protection cells - available on LM324K and LM324KA only
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

<table>
<thead>
<tr>
<th></th>
<th>LM2902</th>
<th>ALL OTHER DEVICES</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, VCC (see Note 1)</td>
<td>±13 or 26</td>
<td>±16 or 32</td>
<td>V</td>
</tr>
<tr>
<td>Differential input voltage, V_ID (see Note 2)</td>
<td>±26</td>
<td>±32</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage, V_I (either input)</td>
<td>−0.3 to 26</td>
<td>−0.3 to 32</td>
<td>V</td>
</tr>
<tr>
<td>Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 15 V (see Note 3)</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package thermal impedance, θJA (see Notes 4 and 5)</th>
<th>D package</th>
<th>86</th>
<th>86</th>
<th>°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DB package</td>
<td>96</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N package</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS package</td>
<td>76</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PW package</td>
<td>113</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Package thermal impedance, θJC (see Notes 6 and 7)</td>
<td>FK package</td>
<td>5.61</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>J package</td>
<td>15.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W package</td>
<td>14.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating virtual junction temperature, T_J	150	150	°C	
Case temperature for 60 seconds	FK package	260	°C	
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds	J or W package	300	300	°C
Storage temperature range, T_stg	−65 to 150	−65 to 150	°C	

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:
1. All voltage values (except differential voltages and VCC specified for the measurement of IDS) are with respect to the network GND.
2. Differential voltages are at IN+, with respect to IN−.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
4. Maximum power dissipation is a function of T_J(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (T_J(max) − TA)/θJA. Operating at the absolute maximum T_J of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
6. Maximum power dissipation is a function of T_J(max), θJC, and TC. The maximum allowable power dissipation at any allowable case temperature is PD = (T_J(max) − TC)/θJC. Operating at the absolute maximum T_J of 150°C can affect reliability.
7. The package thermal impedance is calculated in accordance with MIL-STD-883.

ESD protection

<table>
<thead>
<tr>
<th>TEST CONDITIONS</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-Body Model</td>
<td>±2</td>
<td>kV</td>
</tr>
</tbody>
</table>

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, $V_{CC} = 5 \, \text{V}$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>T_A‡</th>
<th>LM124</th>
<th>LM224</th>
<th>LM324K</th>
<th>LM324KA</th>
<th>LM2902</th>
<th>LM2902KV</th>
<th>LM2902KAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO}</td>
<td>Input offset voltage</td>
<td>$V_{CC} = 5 , \text{V} \text{ to } \text{MAX}, \quad V_O = 1.4 , \text{V}$</td>
<td>25°C</td>
<td>MIN TYP δ MAX</td>
<td>MIN TYP δ MAX</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Input offset current</td>
<td>$V_O = 1.4 , \text{V}$</td>
<td>25°C</td>
<td>2 30</td>
<td>2 50</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IB}</td>
<td>Input bias current</td>
<td>$V_O = 1.4 , \text{V}$</td>
<td>25°C</td>
<td>–20 –150</td>
<td>–20 –250</td>
<td>nA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ICR}</td>
<td>Common-mode input voltage range</td>
<td>$V_{CC} = 5 , \text{V} \text{ to } \text{MAX}$</td>
<td>25°C</td>
<td>0 to $V_{CC} – 1.5$</td>
<td>0 to $V_{CC} – 1.5$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>High-level output voltage</td>
<td>$R_L = 2 , \text{k} \Omega$</td>
<td>25°C</td>
<td>$V_{CC} – 1.5$</td>
<td>$V_{CC} – 1.5$</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Low-level output voltage</td>
<td>$R_L \leq 10 , \text{k} \Omega$</td>
<td>Full range</td>
<td>5 20</td>
<td>5 20</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{VD}</td>
<td>Large-signal differential voltage amplification</td>
<td>$V_{CC} = 15 , \text{V}, \quad V_O = 1 , \text{V} \text{ to } 11 , \text{V}, \quad R_L \geq 2 , \text{k} \Omega$</td>
<td>25°C</td>
<td>50 100</td>
<td>25 100</td>
<td>V/mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>$V_{IC} = V_{ICR\text{min}}$</td>
<td>25°C</td>
<td>70 80</td>
<td>65 80</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{SVR}</td>
<td>Supply-voltage rejection ratio ($\Delta V_{CC}/\Delta V_{IO}$)</td>
<td></td>
<td>25°C</td>
<td>65 100</td>
<td>65 100</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{O1}/V_{O2}</td>
<td>Crosstalk attenuation</td>
<td>f = 1 kHz to 20 kHz</td>
<td>25°C</td>
<td>120</td>
<td>120</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{O}</td>
<td>Output current</td>
<td>$V_{CC} = 15 , \text{V}, \quad V_O = 1 , \text{V}, \quad V_O = 0$</td>
<td>Source</td>
<td>25°C</td>
<td>–20 –30 –60 –20 –30 –60</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 15 , \text{V}, \quad V_O = –1 , \text{V}, \quad V_O = 15 , \text{V}$</td>
<td>Sink</td>
<td>Full range</td>
<td>–10</td>
<td>–10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Short-circuit output current</td>
<td>$V_{CC} = 5 , \text{V}, \quad GND \text{ at } –5 , \text{V}$</td>
<td>$V_O = 0$,</td>
<td>25°C</td>
<td>±40 ±60</td>
<td>±40 ±60</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply current (four amplifiers)</td>
<td>$V_O = 2.5 , \text{V}$, No load</td>
<td>Full range</td>
<td>0.7 1.2</td>
<td>0.7 1.2</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = \text{MAX}$,</td>
<td>$V_O = 0.5 , V_{CC}$, No load</td>
<td>Full range</td>
<td>1.4 3</td>
<td>1.4 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.
‡ Full range is –55°C to 125°C for LM124, –25°C to 85°C for LM224, and 0°C to 70°C for LM324.
§ All typical values are at $T_A = 25°C$.

Texas Instruments

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Electrical Characteristics

- **V_{io}**: Input Offset Voltage
- **ΔV_{io}/ΔT**: Input Offset Voltage Temperature Drift
- **I_{io}**: Input Offset Current
- **V_{oc}**: Common-Mode Input Voltage Range
- **V_{oh}**: High-Level Output Voltage
- **V_{ol}**: Low-Level Output Voltage
- **A_{vd}**: Large-Signal Differential Voltage Amplification
- **CMRR**: Common-Mode Rejection Ratio
- **k_{bvr}**: Supply-Voltage Rejection Ratio (ΔV_{cc}/ΔV_{io})
- **V_{o1}/V_{o2}**: Crosstalk Attenuation
- **I_{o}**: Output Current
- **I_{os}**: Short-Circuit Output Current
- **I_{cc}**: Supply Current (Four Amplifiers)

Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions†</th>
<th>T_A‡</th>
<th>LM2902</th>
<th>LM2902V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{io}</td>
<td>V_{cc} = 5 V to MAX, V_{o} = 1.4 V</td>
<td>25°C</td>
<td>3</td>
<td>7</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Non-A-suffix devices</td>
<td>Full range</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-suffix devices</td>
<td>25°C</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV_{io}/ΔT</td>
<td>R_S = 0 Ω</td>
<td>Full range</td>
<td>7</td>
<td>10 pA/°C</td>
<td></td>
</tr>
<tr>
<td>I_{io}</td>
<td>V_{o} = 1.4 V</td>
<td>25°C</td>
<td>2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>300</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔI_{io}/ΔT</td>
<td>Input Offset Current Temperature Drift</td>
<td>Full range</td>
<td>10</td>
<td>pA/°C</td>
<td></td>
</tr>
<tr>
<td>I_{ib}</td>
<td>V_{o} = 1.4 V</td>
<td>25°C</td>
<td>0 to 20</td>
<td>250</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{oc}</td>
<td>V_{ccc} = 5 V to MAX</td>
<td>25°C</td>
<td>0 to V_{cc} – 1.5</td>
<td>0 to V_{cc} – 1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>0 to V_{cc} – 2</td>
<td>0 to V_{cc} – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{oh}</td>
<td>R_L = 2 kΩ</td>
<td>25°C</td>
<td>V_{ccc} = 1.5</td>
<td>V_{ccc} = 1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_L = 2 kΩ</td>
<td>Full range</td>
<td>22</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_L > 2 kΩ</td>
<td>Full range</td>
<td>23</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>V_{ol}</td>
<td>R_L ≤ 10 kΩ</td>
<td>Full range</td>
<td>5</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>A_{vd}</td>
<td>V_{ccc} = 15 V, V_{o} = 1 V to 11 V, R_L ≥ 2 kΩ</td>
<td>25°C</td>
<td>25</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>V_{ccc} = V_{icr}min</td>
<td>25°C</td>
<td>50</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>k_{bvr}</td>
<td>V_{ccc} = V_{icr}min</td>
<td>25°C</td>
<td>50</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>V_{o1}/V_{o2}</td>
<td>f = 1 kHz to 20 kHz</td>
<td>25°C</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>I_{o}</td>
<td>V_{ccc} = 15 V, V_{o} = 0, V_{o} = 1 V</td>
<td>25°C</td>
<td>–20</td>
<td>–30</td>
<td>–60</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td>–10</td>
<td>–10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source</td>
<td>25°C</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>Full range</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I_{os}</td>
<td>V_{ccc} at 5 V, GND at –5 V</td>
<td>25°C</td>
<td>±40</td>
<td>±60</td>
<td>±40</td>
</tr>
<tr>
<td>I_{cc}</td>
<td>V_{ccc} = 2.5 V, No load</td>
<td>Full range</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>V_{ccc} = MAX, V_{o} = 0.5 V_{ccc}, No load</td>
<td>Full range</td>
<td>1.4</td>
<td>3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

† All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{ccc} for testing purposes is 26 V for LM2902 and 32 V for LM2902V.
‡ Full range is –40°C to 125°C for LM2902.
§ All typical values are at T_A = 25°C.
Electrical Characteristics

Specified Free-Air Temperature
- **V_{CC} = 5 V (unless otherwise noted)**

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS†</th>
<th>TA‡</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A, LM324KA</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>I0</sub></td>
<td>Input offset voltage</td>
<td>V<sub>CC</sub> = 5 V to 30 V, V<sub>OD</sub> = 1.4 V</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>I<sub>I0</sub></td>
<td>Input offset current</td>
<td>V<sub>OD</sub> = 1.4 V</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>30</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>I<sub>B</sub></td>
<td>Input bias current</td>
<td>V<sub>OD</sub> = 1.4 V</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>-100</td>
<td>-100</td>
<td>-200</td>
</tr>
<tr>
<td>V<sub>Icr</sub></td>
<td>Common-mode input voltage range</td>
<td>V<sub>CC</sub> = 30 V</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>0</td>
<td>V<sub>CC</sub> - 2</td>
<td>0</td>
</tr>
<tr>
<td>V<sub>Qh</sub></td>
<td>High-level output voltage</td>
<td>V<sub>CC</sub> = 30 V, R<sub>L</sub> = 2 k<i>Ω</i></td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>V<sub>Ol</sub></td>
<td>Low-level output voltage</td>
<td>R<sub>L</sub> ≤ 10 k<i>Ω</i></td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td>A<sub>vD</sub></td>
<td>Large-signal differential voltage amplification</td>
<td>V<sub>CC</sub> = 15 V, V<sub>OD</sub> = 1 V to 11 V, R<sub>L</sub> ≥ 2 k<i>Ω</i></td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>25</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>V<sub>ICR</sub> = V<sub>ICRmin</sub></td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td>SV<sub>SR</sub></td>
<td>Supply-voltage rejection ratio (ΔV<sub>CC</sub>/ΔV<sub>IO</sub>)</td>
<td>25°C</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td>V<sub>O1</sub>/V<sub>O2</sub></td>
<td>Crosstalk attenuation</td>
<td>f = 1 kHz to 20 kHz</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td>I<sub>O</sub></td>
<td>Output current</td>
<td>V<sub>CC</sub> = 15 V, V<sub>OD</sub> = 1 V, V<sub>OD</sub> = 0</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>I<sub>OS</sub></td>
<td>Short-circuit output current</td>
<td>V<sub>CC</sub> at 5 V, V<sub>OD</sub> = 200 mV</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>±40</td>
<td>±60</td>
<td>±40</td>
<td>±60</td>
</tr>
<tr>
<td>I<sub>Cc</sub></td>
<td>Supply current (four amplifiers)</td>
<td>V<sub>CC</sub> = 30 V, V<sub>OD</sub> = 15 V</td>
<td>T<sub>A</sub></td>
<td>MIN</td>
<td>TYP§</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°C</td>
<td>Full range</td>
<td>1.4</td>
<td>3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

† All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
‡ Full range is –55°C to 125°C for LM124A, –25°C to 85°C for LM224A, and 0°C to 70°C for LM324A.
§ All typical values are at T_A = 25°C.
operating conditions, $V_{CC} = \pm 15 \, \text{V}, \, T_A = 25^\circ\text{C}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>TYP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>$R_L = 1 , \text{M} \Omega, , C_L = 30 , \text{pF}, , V_I = \pm 10 , \text{V}$ (see Figure 1)</td>
<td>0.5</td>
<td>V/μs</td>
</tr>
<tr>
<td>B_1</td>
<td>$R_L = 1 , \text{M} \Omega, , C_L = 20 , \text{pF}$ (see Figure 1)</td>
<td>1.2</td>
<td>MHz</td>
</tr>
<tr>
<td>V_n</td>
<td>$R_S = 100 , \Omega, , V_I = 0 , \text{V}, , f = 1 , \text{kHz}$ (see Figure 2)</td>
<td>35</td>
<td>nV/√Hz</td>
</tr>
</tbody>
</table>

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/ Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Samples (Requires Login)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-7704301VCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>5962-9950403V9B</td>
<td>ACTIVE</td>
<td>XCEPT</td>
<td>KGD</td>
<td>0</td>
<td>100</td>
<td>TBD</td>
<td>Call TI</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>5962-9950403VCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>77043012A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>7704301CA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>7704301DA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>77043022A</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>7704302CA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>7704302DA</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>JM38510/11005BCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124ADR</td>
<td>OBSOLETE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM124AFKB</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124AJ</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124AJB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124AWB</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM124DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM124DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM124DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM124FKB</td>
<td>ACTIVE</td>
<td>LCCC</td>
<td>FK</td>
<td>20</td>
<td>1</td>
<td>TBD</td>
<td>POST-PLATE</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124J</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124JB</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124N</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM124W</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM124WB</td>
<td>ACTIVE</td>
<td>CFP</td>
<td>W</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224AD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LM224ADE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADRE</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>D</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224ANE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>D</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224AD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADE</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADG</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADRE</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224ADRG</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KAD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KADE</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KADG</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KADRE</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LM224KADRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KAN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224KANE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224KD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KDE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM224KN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224KNE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM224NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM2902D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DRG3</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LM2902KAVQDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KAVQDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KAQMRWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KAQMRWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDB</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDBE4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDBG4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KDGRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM2902KNRE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM2902KNSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KNRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KNSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LM2902KPWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KPWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KPWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KPWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KVQDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KVQDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KVQPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902KVQPWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>N / A for Pkg Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902NSRSG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PWLE</td>
<td>OBSOLETE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>LM2902PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LM2902PWRG3</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902PWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM2902QN</td>
<td>OBSOLETE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324AD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADBLE</td>
<td>OBSOLETE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324ADBR</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADBRE4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADBRG4</td>
<td>ACTIVE</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ADRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324AN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324ANE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324ANSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ANSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324ANSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324APW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LM324APWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324APWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324APWLE</td>
<td>OBSOLETE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324APWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324APWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324APWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324D</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DRG3</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324DRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324KAD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324KADE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324KADG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324KADR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM324KADRE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU Level-1-260C-UNLIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>LM324KADRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324KANE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324KANSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KANSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KANSG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KAPWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KDE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KDERE4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KDRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status (1)</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan (2)</td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp (3)</td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>LM324KNE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324KNSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KNSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KNSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324KPWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324N</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324NE3</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324NE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
<tr>
<td>LM324NSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324NSRE4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324NSRG4</td>
<td>ACTIVE</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PW</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWLE</td>
<td>OBSOLETE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>90</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status<sup>(1)</sup></td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan<sup>(2)</sup></td>
<td>Lead/ Ball Finish</td>
<td>MSL Peak Temp<sup>(3)</sup></td>
<td>Samples (Requires Login)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LM324PWR</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWRE4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWRG3</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324PWRG4</td>
<td>ACTIVE</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td></td>
</tr>
<tr>
<td>LM324Y</td>
<td>OBSOLETE</td>
<td>DIESALE</td>
<td>Y</td>
<td>0</td>
<td>TBD</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>M38510/11005BCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>1</td>
<td>TBD</td>
<td>A42</td>
<td>N / A for Pkg Type</td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBsolete**: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM124, LM124-SP, LM124M, LM2902
• Catalog: LM124, LM124

• Automotive: LM2902-Q1

• Enhanced Product: LM2902-EP

• Military: LM124M, LM124M

• Space: LM124-SP, LM124-SP

NOTE: Qualified Version Definitions:
 • Catalog - TI's standard catalog product
 • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
 • Enhanced Product - Supports Defense, Aerospace and Medical Applications
 • Military - QML certified for Military and Defense Applications
 • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM124DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224DRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224KADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM224KDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902DRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902KPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902KVQOPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

REEL DIMENSIONS

- **Reel Diameter**: Diameter of the reel
- **Reel Width**: Width of the reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Sprocket Holes**: Holes for sprocket engagement
- **Pocket Quadrants**: Quadrants for component orientation
- **User Direction of Feed**: Direction of component feed

www.ti.com 12-Nov-2012
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2902PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902PWRG3</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM2902PWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324ADBR</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>6.6</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324ADRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324ANSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324APWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324APWRG3</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324APWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324DRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324DRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KANSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KAPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>330.0</td>
<td>16.4</td>
<td>6.5</td>
<td>9.0</td>
<td>2.1</td>
<td>8.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324KPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>16.4</td>
<td>8.2</td>
<td>10.5</td>
<td>2.5</td>
<td>12.0</td>
<td>16.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324PWRG3</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>7.0</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>LM324PWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>330.0</td>
<td>12.4</td>
<td>6.9</td>
<td>5.6</td>
<td>1.6</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM124DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224DG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224KADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224KDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902RG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902KVQPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902KDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902KVQPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM2902PWRG3</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2902PWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324ADBR</td>
<td>SSOP</td>
<td>DB</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324ADR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324ADRG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324ANSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324APWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>LM324APWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324APWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>385.0</td>
<td>388.0</td>
<td>194.0</td>
</tr>
<tr>
<td>LM324DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>LM324DR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324DG4</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324KDR</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>2500</td>
<td>333.2</td>
<td>345.9</td>
<td>28.6</td>
</tr>
<tr>
<td>LM324KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324KPWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324KNSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324NSR</td>
<td>SO</td>
<td>NS</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
<tr>
<td>LM324PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM324PWR</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>LM324PWRG3</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>LM324PWRG4</td>
<td>TSSOP</td>
<td>PW</td>
<td>14</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

<table>
<thead>
<tr>
<th>PINS **</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A MAX</td>
<td>0.300 (7.62)</td>
<td>0.300 (7.62)</td>
<td>0.300 (7.62)</td>
<td>0.300 (7.62)</td>
</tr>
<tr>
<td>B MAX</td>
<td>0.785 (19.94)</td>
<td>0.840 (21.34)</td>
<td>0.960 (24.38)</td>
<td>1.060 (26.92)</td>
</tr>
<tr>
<td>B MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C MAX</td>
<td>0.300 (7.62)</td>
<td>0.300 (7.62)</td>
<td>0.310 (7.87)</td>
<td>0.300 (7.62)</td>
</tr>
<tr>
<td>C MIN</td>
<td>0.245 (6.22)</td>
<td>0.245 (6.22)</td>
<td>0.220 (5.59)</td>
<td>0.245 (6.22)</td>
</tr>
</tbody>
</table>

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.
MECHANICAL DATA

W (R-GDFP-F14) CERAMIC DUAL FLATPACK

BASE AND SEATING PLANE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

4040180-2/D 07/03

www.ti.com
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

Caution: Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 each side.

Caution: Body width does not include interlead flash. Interlead flash shall not exceed 0.25 each side.

E. Falls within JEDEC MO-153
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.

Texas Instruments
www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. Falls within JEDEC MO-150

DIM 14 16 20 24 28 30 38
A. MAX 6.50 6.50 7.50 8.50 10.50 10.50 12.90
A. MIN 5.90 5.90 6.90 7.90 9.90 9.90 12.30

4040065 /E 12/01
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>e2e.ti.com</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated