Learn about-

 

Boxtop

 

Revision 6.00 18th April. 2015

 

Valid XHTML 1.0 Transitional

Search with

Google

The Web This site

Valid XHTML 1.0 Transitional

Transistor Faults

Why do transistors fail?

All semiconductor devices are reliable, provided they are operated correctly there is no reason for them to fail at all. Of course they do fail and this can be for a variety of reasons.

Manufacturing faults

PNP Germanium Junction Transistor

Manufacturing faults occasionally occur, usually in new equipment. If there is a fault in a new transistor, it will often show up in the first few hours of use. If it operates correctly for this period then the chances are that it will continue to do so. A large proportion of manufacturing faults can be detected by "soak testing" new equipment. That is running it on a test bench for a number of hours to make sure no early failures occur. Items that survive these tests can confidently be put into regular use.

Component age

NPN Silicon High Power Transistor

There is no real reason that transistors should suffer from aging. A slice of silicon 10 years old should be the same as a 1 year old slice. However older systems containing transistors do begin to give more problems. The reason for this is that other components such as resistors may change their values with age, especialy if they are subject to heating effects caused by current flow. This may eventually result in a transistor operating outside its normal parameters, for example running at a higher than permitted temperature. It is then that transistors may fail. In such circumstances it is wise to investigate the reasons for the failed transistor rather than just replacing it. Always check the voltages at the transistor terminals after replacement to make sure there are no abnormal readings.

External causes

NPN Silicon High Power Transistor

Sometimes external causes may damage or even destroy transistors. Bad handling of FETs can lead to damage by electrostatic discharge. Sometimes this will result in a transistor (or a circuit board) not working when fitted within a system. This can be because the very thin insulating layers within the device have broken down completely due to high−voltage static electricity, carelessly applied to the terminals. What is more sinister is that sometimes such discharges do not cause immediate destruction of the device, but do damage the insulation to such a degree that the device fails sometime (hours or years) later.

In mains (line) powered equipment high voltage pulses that occur from time to time can damage semiconductors. Most mains powered circuits have some sort of protection built in that prevents damage in most cases, but it is rarely 100% effective.

Circuit design

PNP Germanium High Frequency RF Transistor

Many faults can be found, especially in equipment produced for the home user by referring to databases of recurrent faults published in technical magazines on the Internet. The reason these recurrent faults occur is basically down to design. Home products are designed to be produced at a profitable price, and to give trouble free operation for a time. Manufacturers are able to produce products that perform to carefully worked out strategies. Some faults will occur due to the product exceeding its "designed life" whilst others will occur prematurely. Designing an electronic product for a particular life span, under conditions that will be very variable and over which the designers have no control (our homes) is not a precise science. However such faults as do occur usually follow a distinct pattern, and careful recording of previous faults can be a good indication of future ones. These failures can affect transistors just as easily as any other component. Where faults occur prematurely, manufacturers often produce modifications to prevent similar failures in the future.

Power vs. reliability.

PNP Germanium High Frequency RF Transistor

When considering an item of faulty equipment, always remember that the reliability of any component is proportional to the power it dissipates. In other words, "If it normally gets hot it normally fails". Such a rule suggests that a failed transistor is more likely to be in the output stages of a circuit than the low voltage, low power stages that precede it. Any circuit which uses either high voltages, high current or both, puts much more stress on semiconductors than low voltage, low current circuits. Although the devices used in these circuits are designed to withstand such use, they do so less well than those devices that have a relatively easy life in low power situations. Main problem areas are power supplies and output stages. When faced with a faulty circuit and very little circuit information, a quick check on semiconductors in these stages can save much work.

Semiconductor faults

NPN Silicon High Power Transistor

When a diode or a transistor fails, one of two things usually happens:

  •  A junction (or junctions) go short circuit (its resistance becomes very low or zero).

  •  A junction (or junctions) go open circuit (its resistance becomes very high or infinity).

Of course this list could be extended to include that junctions may become leaky (slightly low resistance), though this is rare. In practice this condition is usually followed fairly soon by a complete short circuit.

The above suggests that diodes and transistors can be tested by simple resistance measurements, in most cases this is true. A set of resistance tests can show with a great degree of certainty whether a semiconductor is serviceable or faulty. True, some other faults can occur, and other tests made, but these will be discussed after the all important resistance tests.

Home  Top of Page  Next